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SUMMARY

A typical setup for many inverse problems is that one wishes to update beliefs about a spatially de-
pendent set of inputsx given rather indirect observationsy. Here, the inputs and observed outputs are
related by the complex physical relationshipy = ζ(x)+ε. Applications include medical and geological
tomography, hydrology, and the modeling of physical and biological systems. We consider applications
where the physical relationshipζ(x) can be well approximated by detailed simulation codeη(x).

When the forward simulation codeη(x) is sufficiently fast, Bayesian inference can, in principle,
be carried out via Markov chain Monte Carlo (MCMC). Difficulties arise for two main reasons:

• Even though the code may accurately represent the physical process, there are a large number
of unknown, but required, inputs that must be calibrated to match the observed datay.

• The computational burden of the fastest available forward simulators is often large enough
that approaches for speeding up the MCMC calculations are required.

This paper develops approaches for specifying effective low-dimensional representations of the inputs
x along with MCMC approaches for sampling the posterior distribution. In particular we consider
augmenting the basic formulation with fast, possibly coarsened, formulations to improve MCMC per-
formance. This approach can be very easily implemented in a parallel computing environment. We give
examples in single photon emission computed tomography and in hydrology.

Keywords: MULTIGRID MARKOV CHAIN MONTE CARLO, METROPOLIS COUPLED MARKOV CHAIN MONTE

CARLO, SPATIAL STATISTICS, DISTRIBUTED COMPUTING.



Higdon, Lee and Holloman MCMC for inverse modeling 2

1. INTRODUCTION

A typical setup for many inverse problems is that one wishes to update beliefs about a spatially
dependent set of inputsx given indirect observationsy = (y1, . . . , yn)T . Here the inputs and
observed outputs are related by the complex physical relationshipy = ζ(x) + ε whereζ(x) de-
notes the actual physical system at the true, but unknown statex = (x1, . . . , xm), andε denotes
sampling error. Many such systems can be approximated by detailed computer simulation code
η(x). A very incomplete list of applications includes medical tomography (Weir, 1997), geo-
logical tomography (Andersenet al.2001), hydrology (Leeet al.2002), petroleum engineering
(Hegstad and Omre 2001: Craiget al.2001), as well as a host of other physical, biological, or
social systems. The observed data

y = ζ(x) + ε

are modeled statistically by
y = η(x) + e

where the discrepancy terme accounts for both sampling error and mismatch between the
simulatorη(x) and realityζ(x):

e = ζ(x) − η(x) + ε.

The goal is to use the observed datay to make inference about the spatial input parametersx –
in particular, to characterize the uncertainty aboutx.

The likelihoodL(y|x, θy), which may depend on additional parameters held inθy, is then
specified to account for both mismatch and sampling error. It is worth noting here that the
data come only from a single experiment. So there is no opportunity to obtain data from
additional experiments for which some controlable inputs have been varied. Because of this,
there is little hope of modeling the mismatch termζ(x) − η(x) separately from the sampling
error as is often done in the statistical analysis of complex computer code outputs (Kennedy
and O’Hagan, 2001). Therefore, the likelihood specification will often need to be done with
some care, incorporating the modeler’s judgement about the appropriate size and nature of the
mismatch term.

We consider systems for which the model input paramatersx denote a spatial field or
image. For example, in single photon emission computed tomography (SPECT) the image
intensityx denotes blood flow within a region of the body; in a hydrologic application,x might
give the spatial distribution of hydraulic conductivities or permeability. The simulator requires
gridded inputs and the resolution of the grid is a pre-specified input to the simulator. The spatial
prior for x, π(x|θx), will typically include an additional parameter vectorθx to controlx. The
parameterθx may then be treated as fixed or have a prior of its ownπ(θx). Both modeling and
computing considerations go into specification ofπ(x|θx), which is discussed in the following
section.

The resulting posterior is then given by

π(x, θ) ∝ L(y|η(x), θy) × π(x|θx) × π(θ)

whereθ holds both nuisance parameters(θy, θx), This posterior can, in principle, be explored
via Markov chain Monte Carlo (MCMC). However the combined effects of the high dimen-
sionality ofx and the computational demands of the simulator make implementation difficult
in practice. By itself, the high dimensionality ofx isn’t necessarily a problem. MCMC with
single-site updating has been carried out with relative ease in large image applications. How-
ever, a high dimensional input vectorx does make it quite difficult to build any sort of statistical
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model η̂(x) to approximate the simulator as in Sackset al. (1989) or Kennedy and O’Hagan
(2001). Any MCMC implementation using a single-site updating scheme is impractical since
it will require m forward runs for a single update scan through all the parameters. In addition,
a simulator may require a fine grid to ensure satisfactory numerical performance, but the nu-
merical error may unduly affect the small changes in outputy when only a single component
of x has been updated. The use of higher dimensional proposals has proven somewhat success-
ful (Oliver et al. 1997; Leeet al. 2002), especially when some direct measurements onx are
available as in Hegstad and Omre (2001). A similar strategy that we have found effective is to
reparameterizex; this is discussed in Section 2.

To deal with the computational burden of the forward simulatorη(x), Section 3 lays out
a Metropolis coupled MCMC (Geyer, 1991) implementation that simultaneously runs chains
to sample multiple posterior formulationsπ(x1, θ1), . . . , π(xK , θK) for which the spatial input
parametersx1, . . . , xK are coarsened to varying degrees. Each formulation runs its simulator
ηk(xk) at its own particular grid resolution. This MCMC scheme, which borrows from the work
of Goodman and Sokal (1989) and Liu and Sabatti (1999), allows information from the faster
running, but less accurate, coarse formulations to speed up the mixing for the fine scale chains.
In addition, this scheme is relatively easy to implement on a parallel environment, without
having to “parallelize” the actual simulator code. This distributed, coupled MCMC approach
is discussed in Section 3. Section 4 follows giving a final discussion.

2. SPATIAL REPRESENTATIONS

The simulator typically requires thatx be input overm regular grid points at spatial locations
denoted by the setsx = {sx

1 , . . . , sx
m}, which is contained in the spatial domainS. Hence

the actual input toη(·) requiresx be restricted to the grid pointsxsx = (x(sx
1), . . . , x(sx

m))T .
As regards to notation, we usex when the process is only considered at the set of spatial
locationssx; we takex(s) to mean that the process is defined for alls ∈ S. The grid size
m can often be specified in the simulatorη(x), with fine grids typically giving more accurate
results at the cost of increased computation. We note that recent literature has stressed the
importance of specifying spatial models that are consistent under coarsening or aggregation
schemes. Clearly, the single componentxsx

i
of the input gridx is some form of aggregate

of a continuously defined process in the neighborhood of the locationsx
i . However, in many

applications involving simulation of physical systems, aggregation – equivalently, upscaling or
closure – is a difficult, or even an ill-posed task by itself. So, even though issues regarding
aggreation consistency can play an important role, especially when the aggregation process is
well defined and data are sufficiently informative, the data are usually insufficient to resolvex

in much detail in the applications we consider. Hence we only require that the prior distribution
for x infuse prior knowledge about its spatial distribution – at least at the resolution/level of
detail that we expect from the data – as well as regularize the posterior forx.

In this paper we use both intrinsic Gaussian Markov random fields (MRFs) that model the
m-dimensional processx at the spatial locationssx, and standard Gaussian processes (GP) that
define a processx(s) over continuous space. The intrinsic Gaussian MRF has the form

π(x|θx) ∝ θ
m
2 exp

{− 1
2θxTWx

}
(3)
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whereθx controls the scale ofx and the MRF precision matrix has the simple form

Wij =




ni if i = j
−1 if i ∼ j
0 otherwise

(4)

whereni is the number of neighbors of sitesx
i andi ∼ j means locationssx

i andsx
j are neighbors

of one another. With the regular grids considered in this paper, we specify two sitessx
i andsx

j to
be neighbors if they are directly adjacent on the grid so that interior points of a 2-d rectangular
grid have 4 neighbors; edge sites have 3; and corner sites have 2.

Gaussian process priors are typically specified through their mean and covariance function.
We take the mean to be constant and define the covariance by

Cov(x(sx
i ), x(sx

j )) = θ1ρ

(∥∥∥sx
i −sx

j

θ2

∥∥∥
)

where the correlation functionρ(·) must be positive definite and satisfyρ(0) = 1. We typically
takeρ(d) = e−d2

which leads to very smooth realizations forx(s). By contrast, realizations
under the locally planar MRF model (3) exhibit local roughness.

This distinction is important if one wishes to infer about the local nature ofx and if the
data are informative about the small scale nature ofx. It is often the case in inverse problems
that the indirectly observed data give no information regarding the small-scale behavior of
x. Also, the input gridx can best be regarded as the aggregate of an underlying continuous
process. For the two reasons above it is often impossible to distinguish between locally smooth
and locally rough character ofx(s) from the data alone. When this is the case, as it is in the
hydrology examples, computational considerations can lead us to favor models with smooth
local behavior.

When we can get away with a smooth GP specification forx(s), we can then efficiently
representx(s) by convolving a white noise processu(s), s ∈ S with a smoothing kernelk(s) so
that

x(s) =
∫
S

k(ν − s)u(ν)dν for s ∈ S. (5)

The resulting covariance function forx(s) depends on the displacement vectord = s − s′ and
is given by

Cov(x(s), x(s′)) ∝ ρ(d) ∝
∫
S

k(ν − s)k(ν − s′)dν =
∫
S

k(ν − d)k(ν)dν. (6)

The proportionality depends on the scale of the white noise processu(s) and on
∫
S k2(ν)dν.

We typically takeS to beR1,2,or 3, andk(·) to be a normal density with independence between
the coordinate component directions. This is an equivalent representation of a mean 0 GP with
ρ(d) = e−d2

, possibly after rescaling the coordinate axes. By restricting the latent processu(s)
to coarse lattice locationssu

1 , . . . , su
` , a small number of parameters effectively control the entire

processx(s). Now with a discrete white noise process

u = (u(su
1 , . . . , u(su

` ))T ∼ N(0, I`/θu)

x(s) can be represented by the discrete analog of (5)

x(s) =
∑̀
k=1

ukk(s − su
k) (7)
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Figure 1. A stationary spatial process x(s) can be generated by smoothing white noise. The top frames
the induced process x(s) obtained by smoothing the white noise shown by vertical lines using the kernel
shown in the top left of the figure. Moving from left to right, the underlying white noise process becomes
successively coarser. Below each of the top frames is a function showing Cov(x(s0), x(s)) as a function
of s; the location of s0 is marked in the figures. In the rightmost frame the uk’s are so sparse that the
covariance of the induced process begins to deviate from the ideal covariance function it is trying to
match, which is shown by the black dotted line.

wherek(· − su
k) is the smoothing kernel centered atsu

k. Figure 1 shows three successively
coarsened white noise realizationsu, their induced processesx(s) from convolvingu with the
kernel shown in the upper left of the top row of figures; the bottom row of figures shows
Cor(x(s0), x(s)) as a function ofs. The dotted black line gives the ideal covariance function
obtained via (6). For this smooth process,u can undergo substantial coarsening before the
induced process begins to substantially deviate from the ideal one obtained from continuous
white noise.

Before moving on, we note there are alternative lower dimensional representations ofx(s)
that one may consider such as Cholesky, SVD, or Fourier. Takingx to be discrete, in each case
we can expressx = Ku so thatx is the weighted sum of bases given by the columns ofK. The
difference between the approaches is in the specification ofK. We favor the moving average
representation because of its local nature as well as the simplicity of its basis representation.
Its local nature meshes well with MCMC in which a simple Metropolis update of individualuk

will influence a local region ofx(s). The simplicity of this basis representation easily allows for
extending the basic model for whichu ∼ N(0, I`/θu). By allowing more general dependence
within u the model can be extended to account for non-stationarity or time dependence; see
Calderet al. (2002) for example.

Example 1. Studying the flow of water underground is of great interest to engineers, with
important applications to cleanup of contaminated soil and petroleum exploration and produc-
tion. A statistically interesting component of this problem is the inverse problem of inferring
soil structure (e.g., permeability) from flow data. Further details and references can be found
in Leeet al. (2002).

The data presented here are from a larger study (Annableet al.1998) at the Hill Air Force
Base in Utah where the ground contains a number of contaminants. We look only at conser-
vative tracer data, an experiment that yields information only on the permeabilities and not on
the contamination. The site is 14 feet by 11 feet, with four injection wells along one edge and
three production (extraction) wells along the opposite edge. Water is pumped continuously
through the field, and then a tracer is added and the time of travel is measured for the tracer
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Figure 2. Layout of wells, posterior realizations, and posterior means for both an MRF model and a moving
average Gaussian Process model for the Hill Air Force Base data. In the upper left plot, the wells are labeled “I”
for injectors, “P” for producers, and the samplers are shown with numbers where the value is the breakthrough
time (in days) for each well. For the permeability plots, darker regions correspond to higher permeability values.

from the injection wells to five measurements sites (sampling wells) in the field. This time of
travel is referred to as the breakthrough time for each sampling location. Since water flows
faster through regions of higher permeability, one can learn about the underlying permeabil-
ities through the breakthrough times. The upper left plot of Figure 2 shows the locations of
the injectors, producers, and samplers, with the breakthrough times shown for the sampling
locations.

Permeabilities vary spatially and are typically considered to be log-normally distributed.
Thus all our priors for permeabilities are stated on the log scale. We use a 42 by 33 grid of
square cells, one-third of a foot on each side. For notational convenience, we represent the
unknown (log) permeabilities as am = 42 × 33 × 1 latticex. Conditional on a specified per-
meability fieldx, the breakthrough times are found from the solution of differential equations
given by physical laws, i.e., conservation of mass, Darcy’s Law, and Fick’s Law. We do this
using the S3D streamtube computer code of King and Datta-Gupta (1998) and find then = 5
fitted breakthrough times,̂y = η(x).

We consider two formulations – one for whichx is modeled as a 2-d MRF prior using four
nearest neighbors on am = 42 × 33 lattice; and one for whichx is parameterized as a GP via
(7), where thè = 72 kernel locations are shown by the dots in the bottom left frame of Figure
2 and the kernels are bivariate normal with a one sd ellipse shown in the bottom left frame of
Figure 2. The resulting posteriors are

π(x, θx|y) ∝ exp{− 1
2λ(y − η(x))T (y − η(x))} × θ

−m
2

x exp{− 1
2θxx

T Wx} × θαx−1e−βxθ

π(u, θu|y) ∝ exp{− 1
2λ(y − η(x))T (y − η(x))} × θ

− `
2

u exp{− 1
2θuuT u} × θαu−1

u e−βuθu .

In the MCMC implementations,x is updated via multivariate Hastings steps (Leeet al.2002)
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andu is updated via single site Metropolis steps.
Figure 2 shows the results from the two formulations. The top row shows two realizations

from the posterior and the posterior mean for the MRF prior, while the bottom row shows
analogous plots for the GP prior. Both models fit the observed data well. In particular, both
show a region of lower permeability in front of (relative to the injectors) the central well, which
has the latest breakthrough time.�

3. COMPUTATION

3.1Linking coarse and fine formulations

In many applications, the computational demands of the simulator greatly restrict the number
of simulator runs that can be carried out, making posterior exploration via standard MCMC
difficult or even impractical. An alternative is to formulate a coarsened version of the problem.
Under this coarse specification, a coarsened counterpart for the inputx is defined byx̃ =
(x̃1, . . . , x̃m̃)T = Cx, whereC is the coarsening operation which maps am-vector to a lower
dimensional̃m-vector. We usesx̃ = {sx̃

1 , . . . , sx̃
m̃} to denote the spatial locations associated with

this coarse grid. Typically,C is a m̃ × m matrix so thatCx is a simple linear transformation,
such as averaging or summing groups of fine-scale pixels to make coarse pixels. However,
coarsening, or upscaling, could conceivably be a more complicated operation, depending on the
application. Depending on the problem,y, θy, andθx might also require coarsened counterparts
ỹ, θ̃ỹ, and θ̃x̃ which are modifications of their original form. In addition, the likelihood and
priors under the coarsened formulation may also differ. The net result is two separate posterior
distributions – one fine and one coarse:

fine π(x, θ|y) ∝ L(y|η(x), θ) × π(x|θx) × π(θ)
coarse π̃(x̃, θ̃|ỹ) ∝ L̃(ỹ|η(x̃), θ̃) × π̃(x̃|θ̃x̃) × π̃(θ̃).

In order to link the coarse and fine-scale formulations, we make use ofMetropolis coupled
MCMC (Geyer, 1991). Now, instead of running two separate MCMC chains, one on the fine
posterior and one on the coarse posterior, a single chain is run on the product distribution. This
coupled chain has stationary distributionπ(x, θ|y) × π̃(x̃, θ̃|ỹ). Because of the coarsened input
x̃ to the simulator, the chain sampling the coarse-scale posterior will run more quickly. In
addition, the coarse-scale posterior is typically smoother and easier to sample via MCMC as
compared to its fine-scale counterpart. Hence an efficient coupling scheme will allow informa-
tion to move between the two formulations.

One possible implementation of such a coupled chain alternates standard within-scale up-
dates with “swapping” updates that allow information to move between the two scales as shown
below:

(x, θ)1

(x̃, θ̃)1
MCMC−→
MCMC−→

(x, θ)2

(x̃, θ̃)2
SWAP−→ (x, θ)3

(x̃, θ̃)3
MCMC−→
MCMC−→

(x, θ)4

(x̃, θ̃)4
SWAP−→ (x, θ)5

(x̃, θ̃)5
MCMC−→
MCMC−→

· · ·
· · ·

Here the updates denoted byMCMC−→ affect parameters within a given scale, while the updates
denoted bySWAP−→ are a Hastings update that proposes new candidates(x∗, θ∗, x̃∗, θ̃∗) according
to the proposal kernel

q((x, θ, x̃, θ̃) → (x∗, θ∗, x̃∗, θ̃∗)),
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which is accepted according to the Hastings rule with probability

1 ∧ π(x∗, θ∗|y)π̃(x̃∗, θ̃∗|ỹ) × q((x∗, θ∗, x̃∗, θ̃∗) → (x, θ, x̃, θ̃))
π(x, θ|y)π̃(x̃, θ̃|ỹ) × q((x, θ, x̃, θ̃) → (x∗, θ∗, x̃∗, θ̃∗))

(8)

wherea ∧ b is the minimum ofa andb.
We now describe some specific swapping proposalsq((x, θ, x̃, θ̃) → (x∗, θ∗, x̃∗, θ̃∗)) for the

applications we consider. It is often convenient to break the swapping proposal kernel into the
product

q((x, θ, x̃, θ̃) = q((x, θ) → (x̃∗, θ̃∗)) × q((x̃, θ̃) → (x∗, θ∗))

whereq((x, θ) → (x̃∗, θ̃∗)) generates a coarse-scale proposal(x̃∗, θ̃∗) from the current fine-scale
state(x, θ), and the kernelq((x̃, θ̃) → (x∗, θ∗)) generates a fine-scale proposal(x∗, θ∗) from the
current coarse-scale state(x̃, θ̃).

Swapping proposals for MRF priors

When we use the MRF prior forx andx̃ (3), we generate the coarse-scale proposal by determin-
istically coarsening the fine-scale state and then generating a candidate valueθ̃∗ by simulating
from its full conditional distribution (under the coarse-scale posterior) given the new proposed
valuex̃∗. This proposal kernel can be written

q((x, θ) → (x̃∗, θ̃∗)) = I[x̃∗ = Cx] × π̃(θ̃∗|x̃∗, ỹ)

whereI[·] is the indicator function,Cx is the coarsening operation applied to the fine-scale
x, andπ̃(θ̃|x̃∗, ỹ) is the full conditional distribution of̃θ under the coarse formulation. If̃θ is
given a conjugateΓ(αx, βx) prior, then its full conditional also has a gamma form. Also for the
applications we consider,C is a simple summing or averaging operation.

The fine-scale candidate(x∗, θ∗) given the current coarse-scale state(x̃, θ̃) is generated by
drawing from the prior distributionπ(x∗|θ†) subject to the constraintCx∗ = x̃. The valueθ† is a
deterministic function of̃θ chosen so that the candidatex∗ most nearly matches the properties
of typical fine-scale realizations. In the 1-d application of Example 2, we takeθ† = 1

8 θ̃; in the
2-d SPECT application of Example 3, we takeθ† = 1

32 θ̃. Oncex∗ has been generated,θ∗ can
then be drawn from its full conditional given the candidate valuex∗. Hence

q((x̃, θ̃) → (x∗, θ∗)) ∝ π(x∗|θ†, y)I[x̃ = Cx∗] × π(θ∗|x∗, y).

Note that when the priorπ(x|θ) has a multivariate normal form and C is a matrix, then the
proposalx∗ can be generated directly. This update is more problematic when the prior forx is
not normal.

Example 2 Before considering swapping updates for formulations involving moving aver-
age specifications forx, we first consider a synthetic blur free, 1-d imaging example. A smooth,
1-d souce is emitting according to a Poisson process with intensity given by the smooth, solid
line(s) in Figures 3 (a & b). Under the fine-scale formulation of the problem is a 1-d array of
n = 40 detectors recording emissions from the source; the count for each detector is shown
in Figure 1(a). A 1-d Gaussian MRF prior over them = 40 detector sites is assigned to the
unknown fine-scale imagex, with aΓ(α, β) prior for the precision parameterθx. A coarse-scale
formulation is obtained by combining adjacent detector pairs so that the coarsened data consist



Higdon, Lee and Holloman MCMC for inverse modeling 9

0 20 40 0 10 20
fine pixels/bins coarse pixels/bins

0
15

0
15

0
15

0
15

0
15

fin
e 

sc
al

e 
bi

n 
co

un
ts

0
30

0
30

0
30

0
30

0
30

co
ar

se
 s

ca
le

 b
in

 c
ou

nt
s

(c) fine realizations (d) coarse realizations

(a) fine data and source (b) coarse data and source

(e) 90 % posterior ci (f) 90% posterior  ci
S

W
A

P
S

W
A

P
M

C
M

C
M

C
M

C

data, realizations, and posterior from the coupled MCMC

0
15

30

0
30

60
0

30
60

0
15

30

Figure 3. Data, posterior realizations, and posterior summary for the coupled MCMC scheme: (a & b) Data and
true image intensity under the fine and coarse formulations; (c & d) a sequence of four updates under the coupled
MCMC scheme; (e & f) pointwise posterior 90% credible intervals for the image intensitiesx and x̃ under the
fine and coarse formulations.

of ñ = 20 counts (Figure 1(b)). Similarly, a MRF prior is assigned to the coarsened imagex̃,
which is divided intom̃ = 20 sites, one for each coarse detector.

The fine and coarse formulations are given by

fine

L(y|x) ∝
n∏

i=1

xyi
i exp{−xi}

π(x|θ) ∝ θ
m
2 exp{− 1

2θxTWx}
π(θ) ∝ θα−1e−βθ

coarse

L̃(ỹ|x̃) ∝
ñ∏

i=1

x̃ỹi
i exp{−x̃i}

π̃(x̃|θ̃) ∝ θ̃
m̃
2 exp{− 1

2 θ̃x̃
T W̃ x̃}

π̃(θ̃) ∝ θ̃α−1e−βθ̃

whereW andW̃ are given by (4) and adjacent detectors are defined to be neighbors. The swap-
ping updates are carried out as described previously, withθ† = 1

8 θ̃. Figures 3 (c & d) show four
successive updates from this coupled MCMC scheme. The resulting posterior pointwise 90%
credible are shown in Figures 3 (e & f) under both the fine and coarse formulations. In this
application, the swap proposals were accepted about 14% of the time.�

Example 3. In SPECT the goal is to estimate a photon emission intensity map using photon
emissions from an object detected by a gamma camera. Figure 4 diagrams the information
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Figure 4. SPECT: An object emits photons with location dependent intensityx(s). The gamma camera obtains
binned counts of photon emissions from various different positions controlled by the anglea. The counts from
each anglea and each bin of the gamma camerab are recorded asyab.

obtained during a SPECT scan. As the object emits photons, the gamma camera records the
locations of photon hits along the camera array. The gamma camera array can rotate completely
around the object. At a given camera position, photon emissions are recorded as counts at each
of 128 bins indexed byb. This accumulation of counts is repeated at each of 120 rotation angles
indexed by anglea.

The data consist of countsyab obtained from binb of the gamma camera while it was
positioned at anglea. Lead columnators on the camera ensure that photons hit the camera at
nearly right angles. Since a photon may be scattered, absorbed, miss the gamma camera, or
otherwise fail to be detected, the probability mappabi gives the probability of an emission from
pixel i being detected at anglea and binb.

(a) (c) (e) (g)

(b) (d) (f) (h)

co
ar
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fin

e

true intensity accepted swap proposal posterior mean

Figure 5. Coupled fine and coarse-scale MCMC for a SPECT example. (a) true emission intensities; (b) coars-
ened version of the true intensities; (c & d) current values forx and x̃ during the coupled MCMC run; (e & f)
proposed fine and coarse imagesx∗ andx̃∗ after swapping an interior patch of the images in (c & d); (g) posterior
mean forx; (h) posterior mean for̃x.
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Figure 6 A proposal that swaps only a piece of the image between the coarse- and fine-scales. Given the current
values forx and x̃, the shaded regions of the two images are exchanged giving the intermediate values. The
coarse shaded piece is refined to give a fine proposalx∗ and the fine shaded piece is coarsened to give a coarse
proposalx̃∗. The stochastic refining of the coarse shaded piece conditions on its previous coarse value as well as
its neighboring fine-scale pixels.

We specify a fine-scale formulation that divides the emission source into am = 128 × 128
lattice of pixels; the coarse-scale formulation divides the emission source into am̃ = 64 × 64
lattice of pixels. Hence the fine formulation requires a120 × 128 × 1282 probability mappabi,
and the coarse formulation requires a120× 128× 642 probability map̃pabi, The countsyab then
have a Poisson distribution with meanλab under the fine-scale formulation, and meanλ̃ab under
the coarse-scale formulation where

λab =
m∑

i=1

xipabi andλ̃ab =
m̃∑

i=1

x̃ip̃abi.

Hence computing changes inλab due to changing a component ofx requires four times as much
effort as does computing changes inλ̃ab due to changing a component ofx̃.

The two formulations can then be written

fine

L(y|x) ∝
∏
a,b

λyab
ab exp{−λab}

π(x|θ) ∝ θ
m
2 exp{− 1

2θxTWx}
π(θ) ∝ θα−1e−βθ

coarse

L̃(y|x̃) ∝
∏
a,b

λ̃yab
ab exp{−λ̃ab}

π̃(x̃|θ̃) ∝ θ̃
m̃
2 exp{− 1

2 θ̃x̃
T W̃ x̃}

π̃(θ̃) ∝ θ̃α−1e−βθ̃

whereW andW̃ are given by (4) with vertically and horizontally adjacent pixels defined as
neighbors. Note that the data are not coarsened in this example. Within-scale MCMC is carried
out as described in Weir (1997).

We originally used swaps as described in Section 3.1. However we found that the fine-scale
proposals were not sufficiently accurate near the edges of the emission phantom (Figure 5 (a)).
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Instead we proposed to swap only interior pieces of the fine and coarse images. Figure 6 shows
how this is carried out. To construct the proposal, the same interior regions of the two images
are exchanged. The region within the coarse-scale exterior is then deterministically coarsened;
the region within the fine-scale exterior is then refined, conditioned on matching its coarse
values and conditioned on the fine-scale pixels neighboring the region. This gives the proposal
a better chance of being accepted – about one in eight swap proposals are accepted. Figure 5
shows an accepted swap along with coarse and fine-scale posterior mean images. MCMC trace
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Figure 7. MCMC trace plots and autocorrelation plots for the intensity of an interior pixel in the SPECT
application under the coupled MCMC approach (top row) and standard MCMC within the fine-scale only (bottom
row). The trace plots are standardized to comparable CPU time. The coupled MCMC is about three times as
efficient when standardized to CPU effort.

plots are shown in Figure 7 for an interior pixel under the two posterior sampling schemes. The
coupled MCMC yields estimated autocorrelation times that are about a third of those obtained
under the standard fine-scale MCMC algorithm.�

Swapping proposals for continuous spatial priors

In the case whenx andx̃ are both modeled a priori as restrictions of an identically distributed

Coarse scaleFine scale

Figure 8. Deterministic coarsening and refining in the case whenx and x̃ are modeled as restrictions of identi-
cally distributed continuous processesx(s) and x̃(s). Given a realization of the underlying continuous process,
the restriction of the process to the fine locationssx or the coarse locationssx̃ is completely determined.

continuous processesx(s) andx̃(s) the swapping is trivial. These processes are constructed via
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(7) using independent copiesu andũ with common spatial locationssu = {su
1 , . . . , su

` } so that

x(s) =
∑̀
k=1

ukk(s − su
k) and x̃(s) =

∑̀
k=1

ũkk(s − su
k)

with u andũ modeled as independentN(0, I`/θ) andN(0, I`/θ̃) draws, respectively. The grid-
dedx essentially represents the continuous process as a piecewise constant over pixels centered
at the locationssx. Likewisex̃ representsx(s) as piecewise constants over larger pixels centered
at the coarse locationssx̃ (Figure 8).

A swap betweenx andx̃ can be carried out by simply exchanging the values of(u, θ) and
(ũ, θ̃). Hence, coarseningx amounts to evaluatingx(s) at the coarse locationssx̃; refining x̃

amounts to evaluating̃x(s) at the fine locationssx. Since this swap transition is symmetric
and deterministic, the acceptance probability of (8) simplifies to a Metropolis acceptance rule.
We defer to Section 3.2 to show an example of swapping using the continuous formulation for
multiple levels of coarsening.

3.2Multi-processor implementation

Perhaps the most appealing aspect of this coupled MCMC approach is that it is readily amenable
to multiprocessor implementation, without having to “parallelize” the simulator code. Multi-
processor implementation is most easily carried out by running separate chains on the various
processors, each exploring its own, possibly coarsened, posterior formulation. These chains
are then coupled by periodically proposing swaps between the parameter values of the various
chains as described in the previous section.

20.66
Injector

52.90 49.97

20.33

33.17

10.21

Producer

35.2710.91
Figure 9. Data for the multiprocessor sampler shown in Figure 6. An
inverted nine spot pattern of a single injection well surrounded by 8
production wells. A shock of tracer is introduced at the injection well
and the tracer concentration is recorded as a function of time at the
production wells. The tracer breakthrough times are shown for each
of the production wells. The likelihood is based on the breakthrough
times.

As an example we consider a synthetic application similar to the 2-d application of Section
2 where wells are laid out in an inverted nine spot pattern with a single injection well in the
center surrounded by eight production wells. After a shock of tracer is introduced at the central
production well, tracer breakthrough times are recorded at the eight production wells (Figure
9). Figure 10 shows an example of a three processor implementation with each processor
running its own chain – one sampling a coarse-scale posterior, one sampling an intermediate-
scale posterior, and one sampling a fine-scale posterior. The multiprocessor sampler alternates
between within-scale updates and swapping updates. The within-scale updates consist of four
MCMC scans of the permeability image at the coarse-scale, 2 scans at the intermediate-scale,
and one scan at the fine level. The swapping scans consist of proposing swaps between current
permeability images for each of the three possible scale pairings (coarse-intermediate, coarse-
fine, and intermediate-fine). An implementation involving 7 differnt levels of resolution was
also carried out where swaps were attempted between all levels of coarseness. The proportion
of accepted swaps are summarized in Table 1.

Though this example demonstrates a practical parallel implementation of a multi-grid
MCMC scheme, clearly a number of questions loom regarding: allocation of processors to
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Figure 10. Running formulations at different scales on different processors. Three distinct posterior distributions
are obtained for the hydrology application of Section 2.2 by using different grid sizes in the flow simulator (16×16,
20×20, and24×24). The three resulting posteriors are then sampled on three distinct processors. After a within-
scale update scan consisting of 4 MCMC scans on the coarse-scale formulation, 2 on the intermediate-scale, and
1 on the fine-scale, metropolis swaps are proposed between the current realizations at each processor. This figure
shows realizations at each level of coarseness for successive within-scale updates along with the result of the
metropolis swaps between scales. Three such sequences are shown. In the first, the arrows denote an accepted
swap between the coarse and fine-scales, in the second, a coarse-intermediate swap is accepted, in the third, an

intermediate-fine swap is accepted. The
MCMC−→ symbol denotes 3 additional within-scale update scans.

formulations; the choice of levels of coarseness in the auxiliary formulations; and appropriate
swapping strategies, just to name a few. We have found the guidelines in Geyer and Thomp-
son (1995) and Liu and Sabatti (1999) regarding constructing augmented chains relevant here.
Future work and additional experience will give us a better handle on such questions.

4. DISCUSSION

Distributed computing, stingy parameterization, and augmentation with additional fast, coars-
ened formulations has expanded the universe of inverse/model calibration problems that can be
handled using MCMC for posterior exploration. This is particularly relevant since distributed
machines, such as relatively cheap clusters of workstations, are becoming more common and
more accessable. Implementation of the MCMC schemes proposed here a straightforward and
require minimal knowledge in programming for distributed architectures.

We note that the use of Geyer’s coupled MCMC could be replaced with simulated tem-
pering as in Geyer and Thompson, using reversible jump MCMC (Green 1995) to handle the
change in dimension that comes in moving between scales. Our use of coupled MCMC allows
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Table 1. acceptance rates of swap proposals
28 × 28 24 × 24 20 × 20 16 × 16 12 × 12 8 × 8

32 × 32 0.86 0.70 0.39 0.13 0.01 0
28 × 28 - 0.80 0.47 0.22 0.01 0
24 × 24 - - 0.69 0.30 0.03 0
20 × 20 - - - 0.56 0.11 0
16 × 16 - - - - 0.21 0
12 × 12 - - - - - 0.01

us to control the amount of processing on each scale and makes it unnecessary to compute
normalizing constants.

This research was supported in part by National Science Foundation grant DMS 9873275
and LDRD grant 20020058ER from Los Alamos National Laboratory.

REFERENCES

Andersen, K. E., Brooks, S. P. and Hansen, M. B. (2001). Bayesian inversion of geoelectrical resistivity data,
Technical report r-01-2016, Department of Mathematical Sciences, Aalborg University.

Annable, M. D., Rao, P. S. C., Hatfield, K., Graham, W. D., Wood, A. L. and Enfield, C. G. (1998). Partitioning
tracers for measuring residual napl: field-scale test results, Journal of Environmental Engineering 124, 498–
503.

Calder, C., Holloman, C. and Higdon, D. (2002). A space-time model for ozone concentration using process
convolutions, in R. Kass (ed.), Bayesian Case Studies VI, Springer Verlag.

Craig, P. S., Goldstein, M., Rougier, J. C. and Seheult, A. H. (2001). Bayesian forecasting using large computer
models, Journal of the American Statistical Association, 96, 717–729.

Geyer, C. J. (1991). Monte carlo maximum likelihood for dependent data, in E. Keramidas (ed.), Computer
Science and Statistics: Proceedings of the 23rd Symposium Interface, pp. 156–163.

Geyer, C. J. and Thompson, E. A. (1995). Annealing markov chain Monte Carlo with applications to ancestral
inference, Journal of the American Statistical Association 90, 909 – 920.

Goodman, J. and Sokal, A. D. (1989). Multigrid Monte Carlo method, Physical Review Letters D 40, 2035–2072.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination,
Biometrika, 82, 711–732.

Hegstad, B. K. and Omre, H. (2001). Uncertainty in production forecasts based on well observations, seismic
data and production history, Society of Petroleum Engineers Journal pp. 409–424.

Higdon, D., Lee, H. and Bi, Z. (2002). A Bayesian approach to characterizing uncertainty in inverse problems
using coarse and fine scale information, to appear in IEEE Transactions in Signal Processing.

Kennedy, M. and O’Hagan, A. (2001). Bayesian calibration of computer models (with discussion), Journal of
the Royal Statistical Society (Series B) 68, 425–464.

King, M. J. and Datta-Gupta, A. (1998). Streamline simulation: A current perspective, In Situ 22, 91–140.

Lee, H., Higdon, D. M., Bi, Z., Ferriera, M. and West, M. (2002). Markov random field models for high-
dimensional parameters in simulations of fluid flow in porous media, to appear in Technometrics.

Liu, J. and Sabatti, C. (1999). Simulated sintering: Markov chain Monte Carlo with spaces of varying dimensions
(with discussion), in J. Bernardo, J. Berger, A. Dawid and A. Smith (eds), Bayesian Statistics, Vol. 6, Oxford,
386–413.

Oliver, D. S., Cunha, L. B. and Reynolds, A. C. (1997). Markov chain Monte Carlo methods for conditioning a
permeability field to pressure data, Mathematical Geology 29, 61–91.



Higdon, Lee and Holloman MCMC for inverse modeling 16

Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P. (1989). Design and analysis of computer experiments
(with discussion), Statistical Science 4, 409–423.

Weir, I. (1997). Fully Bayesian reconstructions from single photon emission computed tomography, Journal of
the American Statistical Association 92, 49–60.


